Protein Docking Model Evaluation by Graph Neural Networks
نویسندگان
چکیده
منابع مشابه
teacher educator evaluation model
اگرکیفیت معلم کلاس برای بهبودیادگیری دانش آموزحیاتی است،پس کیفیت اساتیددانشجو-معلمان، یابه عبارتی معلمین معلمان نیزبرای پیشرفت آموزش بسیارمهم واساسی است.ناگفته پیداست که یک سیستم مناسب آموزش معلمان ،معلمین با کیفیتی را تربیت خواهدکرد.که این کار منجربه داشتن مدارس خوب، ودرنتیجه نیروی کارماهرتروشهروندبهتربرای جامعه خواهدشد. اساتیددانشجو-معلمان نقشی بسیارمهم را در سیستم اموزش معلمان درسراسرجهان ای...
Aircraft Visual Identification by Neural Networks
In the present paper, an efficient method for three dimensional aircraft pattern recognition is introduced. In this method, a set of simple area based features extracted from silhouette of aerial vehicles are used to recognize an aircraft type from its optical or infrared images taken by a CCD camera or a FLIR sensor. These images can be taken from any direction and distance relative to the fly...
متن کاملCDS Evaluation Model with Neural Networks
This paper provides a methodology for valuing credit default swaps (CDS). In these financial instruments a sequence of payments is promised in return for protection against the credit losses in the event of default. Given the widespread use of credit default swaps, one major concern is whether the credit risk has been priced accurately. Credit risk assessment of counterparty is an area of renew...
متن کاملEvaluation of docking functions for protein-ligand docking.
Docking functions are believed to be the essential component of docking algorithms. Both physically and statistically based functions have been proposed, but there is no consensus about their relative performances. Here, we propose an evaluation approach based on exhaustive enumeration of all possible docking solutions obtained with a discretized description of a rigid docking process. We apply...
متن کاملKernel Graph Convolutional Neural Networks
Graph kernels have been successfully applied to many graph classification problems. Typically, a kernel is first designed, and then an SVM classifier is trained based on the features defined implicitly by this kernel. This two-stage approach decouples data representation from learning, which is suboptimal. On the other hand, Convolutional Neural Networks (CNNs) have the capability to learn thei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Molecular Biosciences
سال: 2021
ISSN: 2296-889X
DOI: 10.3389/fmolb.2021.647915